VOLATILITY PREDICTION BY TREED GAUSSIAN PROCESS WITH LIMITING LINEAR MODEL

Phichhang Ou and Hengshan Wang

References

  1. [1] R.F. Engle, Autoregressive conditional heteroskedasticity withestimates of variance of United Kingdom inflation, Economet-rica, 50 (4), 1982, 987–1008.
  2. [2] T. Bollerslev, Generalized autoregressive conditional het-eroskedasticity, Journal of Econometrics, 31(3), 1986, 307–327.
  3. [3] D.B. Nelson, Conditional heteroskedasticity in asset returns:A new approach, Econometrica, 59 (2), 1991, 347–370.
  4. [4] L. Glosten, R. Jagannathan, & D. Runkle, On the relationshipbetween the expected value and the volatility of the nominalexcess return on stocks, Journal of Finance, 48 (5), 1993,1779–1801.
  5. [5] R.F. Engle & V.K. Ng, Measuring and testing the impact ofnews on volatility, Journal of Finance, 48 (5), 1993, 1749–1778.
  6. [6] T.G. Andersen, R.A. Davis, J.P. Kreiß, & T. Mikosch, Handbookof financial time series (Berlin, Heidelberg: Springer-Verlag,2009).
  7. [7] T.G. Andersen & T. Bollerslev, Answering the skeptics: Yes,standard volatility models do provide accurate forecasts, In-ternational Economic Review, 39 (4), 1998, 885–905.
  8. [8] S. Figlewski, Forecasting volatility, Financial Markets, Insti-tutions and Instruments, 6 (2), 1997, 1–88.
  9. [9] D.G. McMillan, A.E.H. Speight, & O. Gwilym, Forecasting UKstock market volatility: A comparative analysis of alternatemethods, Applied Financial Economics, 10 (4), 2000, 435–448.
  10. [10] S. Haykin, Neural networks: A comprehensive foundation(Englewood Cliffs: Prentice Hall, 1999).
  11. [11] R.G. Donaldson & M. Kamstra, An artificial neural network-GARCH model for international stock return volatility, Journalof Empirical Finance, 4 (1), 1997, 17–46.173
  12. [12] M. Bildirici & O.O. Ersin, Improving forecasts of GARCHfamily models with the artificial neural networks: An applica-tion to the daily returns in Istanbul Stock Exchange, ExpertSystems with Applications, 36 (4), 2009, 7355–7362.
  13. [13] F. Tay & L. Cao, Financial forecasting using support vectormachines, Neural Computation and Application, 10, 2001,184–192.
  14. [14] V.N. Vapnik, The nature of statistical learning theory (NewYork: Springer-Verlag, 1995).
  15. [15] F. Perez-Cruz, J.A. Afonso-Rodriguez, & J. Giner, EstimatingGARCH models using support vector machines, Journal ofQuantitative Finance, 3 (3), 2003, 163–172.
  16. [16] C.E. Rasmussen & C.K.I. Williams, Gaussian Processes forMachine Learning (Massachusetts: MIT Press, 2006).
  17. [17] S. Brahim-Belhouari & A. Bermak, Gaussian process for non-stationary time series prediction, Computational Statistics andData Analysis, 47 (4), 2004, 705–712.
  18. [18] R.B. Gramacy & H.K.H. Lee, Bayesian treed Gaussian processmodels with an application to computer modeling, Journal ofthe American Statistical Association, 103(483), 2008, 1119–1130.
  19. [19] R.B. Gramacy & H.K.H. Lee, Gaussian processes and limitinglinear models, Computational Statistics and Data Analysis,53 (1), 2008, 123–136.
  20. [20] H. Chipman, E. George, & R. McCulloch, Bayesian CARTmodel search (with discussion), Journal of the American Sta-tistical Association, 93 (443), 1998, 935–960.
  21. [21] W. Chu, S.S. Keerthi, & C.J. Ong, Bayesian support vectorregression using a unified loss function, IEEE Transactions onNeural Networks, 15 (1), 2004, 29–44.
  22. [22] P.R. Hansen & A. Lunde, A forecast comparison of volatilitymodels: Does anything beat a GARCH(1,1)? Journal ofApplied Econometrics, 20 (7), 2005, 873–889.
  23. [23] R.S. Tsay, Analysis of financial time series (Hoboken, NewJersey: John Wiley & Sons, Inc., 2005).
  24. [24] R.Y. Ho, The Hong Kong securities markets: Review andprospects, Asia-Pacific Financial Markets, 5, 1998, 29–44.
  25. [25] R.B. Gramacy, tgp: An R package for Bayesian nonstationary,semiparametric nonlinear regression and design by treed Gaus-sian process models, Journal of Statistical Software, 19(9),2007, 1–46.
  26. [26] R.B. Gramacy & M. Taddy, Categorical inputs, sensitivityanalysis, optimization and importance tempering with tgpVersion 2, an R package for treed Gaussian process models,Journal of Statistical Software, 33 (6), 2010, 1–48.
  27. [27] H. Chipman, E. George, & R. McCulloch, Bayesian treedmodels, Machine Learning, 48 (1), 2002, 303–324.
  28. [28] R.F. Engle & A.J. Patton, What good is a volatility model?Quantitative Finance, 1, 2001, 237–245.
  29. [29] T.J. Brailsford & R.W. Faff, An evaluation of volatility fore-casting techniques, Journal of Banking and Finance, 20, 1996,419–438.
  30. [30] C. Brooks & G. Persand, Model choice and value-at-riskperformance, Financial Analysts Journal, 58, 2002, 87–97.
  31. [31] P. Sadorsky, Modeling and forecasting petroleum futuresvolatility, Energy Economics, 28, 2006, 467–488.
  32. [32] S.H. Kang, S.M. Kang, & S.M. Yoon, Forecasting volatility ofcrude oil markets, Energy Economics, 31, 2009, 119–125.
  33. [33] Y. Wei, Y.D. Wang, & D.S. Huang, Forecasting crude oil mar-ket volatility: Further evidence using GARCH-class models,Energy Economics, 32, 2010, 1477–1484.
  34. [34] B.M.A. Awartani & V. Corradi, Predicting the volatility ofthe S&P-500 stock index via GARCH models: The role ofasymmetries, International Journal of Forecasting, 21, 2005,167–183.
  35. [35] K.D. West, Asymptotic inference about predictive ability,Econometrica, 64 (5), 1996, 1067–1084.
  36. [36] F.X. Diebold & R.S. Mariano, Comparing predictive accuracy,Journal of Business and Economic Statistics, 13, 1995, 253–263.

Important Links:

Go Back