Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
NONPARAMETRIC FINANCIAL VOLATILITY MODELLING BASED ON THE RELEVANCE VECTOR MACHINES
Phichhang Ou and Hengshan Wang
References
[1] S. Haykin, Neural networks: a comprehensive foundation(Englewood Cliffs, NJ: Prentice Hall, 1999).
[2] F. Perez-Cruz, J.A. Afonso-Rodriguez, and J. Giner, Estimat-ing GARCH models using support vector machines, Quantita-tive Finance, 3(3), 2003, 163–172.
[3] V.V. Gavrishchaka and S.B. Ganguli, Volatility forecastingfrom multiscale and high-dimensional market data, Neurocom-puting, 55(1), 2003, 285–305.
[4] L.B. Tang, H.Y. Sheng, and L.X. Tang, Forecasting volatilitybased on wavelet support vector machine, Expert Systems withApplications, 36(2), 2009, 2901–2909.
[5] S. Chen, K. Jeong, and W. Hardle, Forecasting volatilitywith support vector machine-based GARCH model, Journalof Forecasting, 29(4), 2010, 406–433.
[6] M.E. Tipping, Sparse Bayesian learning and the relevancevector machine, Journal of Machine Learning Research, 1,2001, 211–244.
[7] S. Ghosh and P.P Mujumdar, Statistical downscaling of GCMsimulations to stream flow using relevance vector machine,Advances in Water Resources, 31(1), 2008, 132–146.
[8] J. Flakea, T.K. Moona, M. McKeeb, and J.H. Gunthera, Appli-cation of the relevance vector machine to canal flow predictionin the Sevier River, Basin Agricultural Water Management,97(2), 2010, 208–214.
[9] W. Caesarendra, A. Widodob, and B.S. Yang, Applicationof relevance vector machine and logistic regression for ma-chine degradation assessment, Mechanical Systems and SignalProcessing, 24(4), 2010, 1161–1171.
[10] P.H. Ou and H.S. Wang, Predicting GARCH, EGARCH andGJR based volatility by the relevance vector machine: Evidencefrom the Hang Seng index, International Research Journal ofFinance and Economics, 39, 2010, 46–63.
[11] P. B¨uhlmann and A.J. McNeil, An algorithm for nonparametricGARCH modelling, Computational Statistics & Data Analysis,40(4), 2002, 665–683.
[12] R.C. Merton, An intertemporal capital asset pricing model,Econometrica, 41(5), 1973, 867–887.
[13] A. Karatzoglou, A. Smola, A. Hornik, and A. Zeileis, AnS4 package for kernel methods in R, Journal of StatisticalSoftware, 11(9), 2004, 1–20.
[14] K.D. West, Asymptotic inference about predictive ability,Econometrica, 64(5), 1996, 1067–1084.
[15] A.J. Patton, Volatility forecast comparison using imperfectvolatility proxies, Journal of Econometrics, 160(1), 2011,246–256.
[16] Y. Wei, Y.D. Wang, and D.S. Huang, Forecasting crudeoil market volatility: Further evidence using GARCH-classmodels, Energy Economics, 32(6), 2010, 1477–1484.
[17] T.J. Brailsford and R.W. Faff, An evaluation of volatilityforecasting techniques, Journal of Banking and Finance, 20(3),1996, 419–438.
[18] B.M.A. Awartani and V. Corradi, Predicting the volatilityof the S&P-500 stock index via GARCH models: The roleof asymmetries, International Journal of Forecasting, 21(1),2005, 167–183.
[19] P. Sadorsky, Modeling and forecasting petroleum futuresvolatility, Energy Economics, 28(4), 2006, 467–488.
[20] F.X. Diebold and R.S. Mariano, Comparing predictive accu-racy, Journal of Business and Economic Statistics, 13(3), 1995,253–263.
Important Links:
Abstract
DOI:
10.2316/Journal.205.2012.3.205-5685
From Journal
(205) International Journal of Modelling and Simulation - 2012
Go Back