OPTIMAL DESIGN METHOD OF PI CONTROLLER FOR MULTIPLE PROCESSES AND COUPLED LIQUID LEVEL SYSTEM

Xianhong Li, Haibin Yu, and Mingzhe Yuan

References

  1. [1] J.G. Ziegler and N.B. Nichols, Optimum settings for automatic controllers, ASME Transactions, 64, 1942, 759–768.
  2. [2] B.D. Tyreus and W.L. Luyben, Tuning PI controllers forintegrator/dead-time processes, Industrial and EngineeringChemistry Research, 31(11), 1992, 2625–2628.
  3. [3] G.H. Cohen and G.A. Coon, Theoretical consideration ofrelated control, ASME Transactions, 75, 1953, 827–834.
  4. [4] J.B. He, Q.G. Wang, and T.H. Lee, PI/PID controller tuning via LQR approach, Proc. 37th IEEE Conf. on Decision and Control, Florida, December 1998, 1177–1182.
  5. [5] G.R. Yu and R.C. Hwang, Optimal PID speed control ofbrushless DC motors using LQR approach, 2004 IEEE Int.Conf. on Systems, Man and Cybernetics, 2004, 473–478.
  6. [6] K.J. Astrom and T. Hagglund, Automatic tuning of simpleregulators with specifications on phase and amplitude margins, Automatica, 20(5), 1984, 645–651.
  7. [7] X.H. Li, H.B. Yu, and M.Z. Yuan, Design of an optimal PID controller based on Lyapunov approach, Proc. 2009 IEEEInt. Conf. on Information Engineering and Computer Science(ICIECS 2009), Wuhan, China, December 19–20, 2009, 17–21.
  8. [8] X.H. Li, H.B. Yu, and M.Z. Yuan, A new design method ofoptimal PID controller with dynamic performances constrained, Control and Intelligent Systems, 40(4), 2012, 1–21.
  9. [9] J. Lan, J. Cho, D. Erdogmus, J.C. Principe, M.A. Motter, and J. Xu, Local linear PID controllers for nonlinear control, Control and Intelligent Systems, 33(1), 2005, 26–34.
  10. [10] M. Tokuda, T. Yamamoto, and Y. Monden, A neural-net based PID controllers for nonlinear multivariable systems, Control and Intelligent Systems, 33(1), 2005, 36–46.
  11. [11] K.J. Astrom, H. Panagopoulos, and T. Hagglund, Design of PI controllers based on non-convex optimization, Automatica, 34(5), 1998, 585–601.
  12. [12] X.H. Li, H.B. Yu, M.Z. Yuan, and J. Wang, Design of robust optimal proportionalintegralderivative controller based on new interval polynomial stability criterion and Lyapunov theorem in the multiple parameters’ perturbations circumstance, IET Control Theory and Applications, 4(11), 2010, 2427–2440.
  13. [13] A. Maidi, M. Diaf, and J.P. Corriou, Optimal linear PI fuzzy controller design of a heat exchanger, Chemical Engineering and Processing, 47, 2008, 938–945.
  14. [14] H. Bevrani and T. Hiyama, Multi-objective PI/PID control design using an iterative linear matrix inequalities algorithm, International Journal of Control, Automation, and Systems, 5(2), 2007, 117–127.
  15. [15] O. Yaniv and M. Nagurka, Robust PI controller design satisfying sensitivity and uncertainty specifications, IEEE Transactions on Automatic Control, 48(11), 2003, 2069–2072.
  16. [16] J.J. D’Azzo and C.H. Houpis, Linear control system analysis and design, 2nd ed. (McGraw-Hill, Inc., 1981).
  17. [17] M.D. Tong, Linear system theory and design (University of Science and Technology of China Press, 2004) (in Chinese).
  18. [18] T.F. Coleman and Y. Li, A reflective Newton method forminimizing a quadratic function subject to bounds on someof the variables, SIAM Journal on Optimization, 6(4), 1996,1040–1058.
  19. [19] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM Journal on Numerical Analysis, 20, 1983, 626–637.
  20. [20] R.J. Vanderbei and D.F. Shanno, An interior point algorithm for non-convex nonlinear programming, Computational Optimization and Applications, 13, 1999, 231–252.
  21. [21] A.F. Izmailov and M.V. Solodov, A truncated SQP methodbased on inexact interior-point solution of sub-problems, SIAM Journal on Optimization, 20(5), 2010, 2584–2613.
  22. [22] W.W. Hager and D.T. Phan, An ellipsoidal branch and bound algorithm for global optimization, SIAM Journal on Optimization, 20(2), 2009, 740–758.
  23. [23] D.E. Goldberg, Genetic algorithms in search, optimization and machine learning (Boston, USA: Addison-Wesley, 1989).
  24. [24] G.H. Hostetter, C.J. Savant, Jr., and R.T. Stefani, Design of feedback control system (New York, USA: CBS College Publishing, 1982).
  25. [25] M. Zhuang and D.P. Atherton, Automatic tuning of opti-mum PID controllers, IEE Proceedings D: Control Theory andApplications, 140(3), 1993, 216–224.

Important Links:

Go Back