HIGHLY SCALABLE PARALLELIZATION OF STANDARD SIMPLEX METHOD ON A MYRINET-CONNECTED CLUSTER PLATFORM

Basilis Mamalis, Grammati Pantziou, Georgios Dimitropoulos, and Dimitris Kremmydas

References

  1. [1] K. Murty, Linear programming (New York, NY: John Wiley& Sons, 1983).
  2. [2] J.A. Hall, Towards a practical parallelization of the simplex method, Computational Management Science, 7(2), 2010, 139–170.
  3. [3] G. Yarmish and R.V. Slyke, A distributed scaleable simplex method, Journal of Supercomputing, 49(3), 2009, 373–381.
  4. [4] E.S. Badr, M. Moussa, K. Paparrizos, N. Samaras, andA. Sifaleras, Some computational results on MPI parallel implementation of dense simplex method, World Academy ofScience, Engineering and Technology (WASET ), 23, 2008,778–781.
  5. [5] J. Qin and D.T. Nguyen, A parallel-vector simplex algorithm on distributed-memory computers, Structural Optimizations, 11(3), 1996, 260–262.
  6. [6] M. Lubin, J.A. Hall, C.G. Petra, and M. Anitescu, Parallel distributed-memory simplex for large-scale stochastic LP problems, Computational Optimization and Applications, 55(3), 2013, 571–596.
  7. [7] K.K. Sivaramakrishnan, A parallel interior point decomposition algorithm for block angular semidefinite programs, Computational Optimization and Applications, 46(1), 2010, 1–29.
  8. [8] M. Geva and Y. Wiseman, Distributed shared memory integration, Proc. IEEE Conf. on Information Reuse and Integration, Las Vegas, NV, 2007, 146–151.
  9. [9] J.A. Hall and K. McKinnon, ASYNPLEX an asynchronousparallel revised simplex algorithm, Annals of Operations Research, 81, 1998, 27–49.
  10. [10] W. Shu and M.Y. Wu, Sparse implementation of revisedsimplex algorithms on parallel computers, Proc. 6th SIAMConf. in Parallel Processing for Scientific Computing, Norfolk, VA, 1993, 501–509.
  11. [11] M.E. Thomadakis and J.C. Liu, An efficient steepest-edge simplex algorithm for SIMD computers, Proc. Int. Conf. on Supercomputing, Philadelphia, PA, 1996, 286–293.
  12. [12] J. Eckstein, I. Boduroglu, L. Polymenakos, and D. Goldfarb, Data-parallel implementations of dense simplex methods on the connection machine CM-2, ORSA Journal on Computing, 7(4), 1995, 402–416.
  13. [13] C.B. Stunkel, Linear optimization via message-based parallel processing, Proc. Int. Conf. on Parallel Processing, Pennsylvania, PA, 1988, 264–271.
  14. [14] D. Klabjan, L.E. Johnson, and L.G. Nemhauser, A parallel primal–dual simplex algorithm, Operations Research Letters, 27(2), 2000, 47–55.
  15. [15] I. Maros and G. Mitra, Investigating the sparse simplex method on a distributed memory multiprocessor, Parallel Computing, 26(1), 2000, 151–170.
  16. [16] S.S. Chen, D.L. Donoho, and M.A. Saunders, Atomic decomposition by basis pursuit, SIAM Journal on Scientific Computing, 20(1), 1998, 33–61.
  17. [17] I.W. Selesnick, R.V. Slyke, and O.G. Guleryuz, Pixel recovery via l1 minimization in the wavelet domain, Proc. Int. Conf. on Image Processing, Singapore, 2004, 1819–1822.
  18. [18] E. Gislason, M. Johansen, K. Conradsen, and B. Ersboll, Three different criteria for the design of two-dimensional zero phase FIR digital filters, IEEE Transactions on Signal Processing, 41(10), 1993, 3070–3074.
  19. [19] K. Steiglitz, T.W. Parks, and J.F. Kaiser, METEOR: aconstraint-based FIR filter design program, IEEE Transactions on Signal Processing, 40(8), 1992, 1901–1909.
  20. [20] S.P. Bradley, U.M. Fayyad, and O.L. Mangasarian, Mathematical programming for data mining: formulations and challenges,INFORMS Journal on Computing, 11(3), 1999, 217–238.
  21. [21] B. Mamalis, G. Pantziou, D. Kremmydas, and G. Dimitropou-los, Reexamining the parallelization schemes for standard full tableau simplex method on distributed memory environments, Proc. 10th IASTED PDCN Conf., Innsbruck, Austria, 2011, 115–123.

Important Links:

Go Back