KINEMATIC PERFORMANCE ANALYSIS OF A CABLE-DRIVEN REDUNDANT ACTUATED PARALLEL MANIPULATOR

Guohua Cui, Jian Liu, Haiqiang Zhang, and Dan Zhang

References

  1. [1] G.Q. Wang, Y.H. Zhao, and Y.F. Hao, Friction stir weldingof high-strength aerospace aluminum alloy and application inrocket tank manufacturing, Journal of Materials Science &Technology, 34, 2018, 73–91.
  2. [2] K. Yang, W.Y. Yang, G.D. Cheng, et al., A new methodologyfor joint stiffness identification of heavy duty industrial robotswith the counterbalancing system, Robotics and ComputerIntegrated Manufacturing, 53, 2018, 58–71.
  3. [3] N. Mendes, P. Neto, A. Loureiro, et al., Machines and controlsystems for friction stir welding: A review, Materials andDesign, 90, 2016, 256–265.
  4. [4] A. Grimm, S. Schulze, A. Silva, et al., Friction stir weldingof light metals for industrial applications, Materials Today:Proceedings, 2, 2015, S169–S178.
  5. [5] M.H. Wan, W.J. Zhou, H.T. Luo, et al., Design and motion con-trol of the high precision heavy load friction stir welding robot,Robot, 40(5), 2018, https://doi.org/10.13973/j.cnki.robot.170560.
  6. [6] Q.C. Li, W.F. Wu, J.N. Xiang, et al., A hybrid robot for frictionstir welding, Proceedings of the Institution of MechanicalEngineers, Part C: Journal of Mechanical Engineering Science,229(14), 2015, 2639–2650.
  7. [7] J. Shi, Y.H. Wang, G. Zhang, et al., Optimal design of 3-DOFPKM module for friction stir welding, International Journalof Advanced Manufacturing Technology, 66(9–12), 2013, 1879–1889.
  8. [8] M. Palpacelli, Static performance improvement of an industrialrobot by means of a cable-driven redundantly actuated system,Robotic and Computer-Integrated Manufacturing, 38(C), 2016,1–8.
  9. [9] H.T. Luo, T.J. Wang, J. Fu, et al., Analytical kinematics andworking-condition simulation for friction stir welding (FSW)robot, 2015 IEEE International Conf. on Information andAutomation, Lijiang, China, August 8–10, 2015.
  10. [10] H.T. Luo, J. Fu, M. Yu, et al., Static simulation analysis onfriction stir welding (FSW) robot, 2016 IEEE InternationalConf. on Cyber Technology in Automation, Control, andIntelligent Systems (CYBER), Chengdu, China, June 19–22,2016.
  11. [11] B. Zi, J.B. Cao, H.B. Zhu, et al., Comparative study of cableparallel manipulators with and without hybrid-driven planarfive-bar mechanism, Applied Mathematical Modelling, 38(24),2014, 5994–6017.
  12. [12] C. Zou, Design and study of FSW robot based on 2UPR/RPSparallel mechanism (Qinhuangdao, ME: Yanshan University,2016).
  13. [13] S. Joshi and L.W. Tsai, A comparison study of two 3-DOFparallel manipulators: One with three and the other withfour supporting legs, IEEE Transactions on Robotics andAutomation, 19(2), 2003, 200–209.
  14. [14] Y.Z. Zhao, B.W. Liang, J. Zhang, et al., The effect analysisof input selection on performances of 3-PPRR translationalparallel mechanism, International Journal of Robotics andAutomation, 2018. DOI: 10.2316/Journal.206.2018.6.206-5169.
  15. [15] X.L. Shan and G. Cheng, Kinematic analysis and parameteroptimization for a novel 2(3HUS+S) parallel hip joint simulator,International Journal of Robotics and Automation, 2017. DOI:10.2316/Journal.206.2017.4.206-4824.
  16. [16] G.H. Cui, H.Q. Zhang, D. Zhang, et al., Analysis of thekinematic accuracy reliability of a 3-DOF parallel robot ma-nipulator, International Journal of Advanced Robotic Systems,12(15), 2015. DOI: 10.5772/60056.
  17. [17] G.H. Cui, D. Zhang, H.D. Zhou, et al., Operating dexterityoptimization and analysis of a 3-DOF parallel manipulator fora tunnel segment assembly system, International Journal ofMechanics and Materials in Design, 11(3), 2015, 277–285.
  18. [18] R. Fan, H. Liu, and D. Wang, Statics and stiffness of 3DOFparallel loading manipulator, Journal of Beijing University ofAeronautics and Astronautics, 40(7), 2014, 861–866.
  19. [19] J. Zhang and Y.Q. Zhao, Stiffness modeling and evaluationfor Exechon parallel kinematic machine module, Journal ofMechanical Engineering, 52(19), 2016, 34–41.

Important Links:

Go Back