AN IMPROVED SPECTRAL CLUSTERING ALGORITHM FOR LARGE-SCALE WIND FARM POWER PREDICTION

Baohua Qiang, Tian Zhao, Wu Xie, Hong Zheng, Haoning Sun, and Jinlong Chen

References

  1. [1] L. Dong, L. Wang, S.F. Khahro, et al., Wind power day-ahead prediction with cluster analysis of NWP, Renewable &Sustainable Energy Reviews, 60, 2016, 1206–1212.
  2. [2] Y. Lu, T. Zhang, Z. Zeng, et al., An improved RBF neuralnetwork for short-term load forecast in smart grids, Interna-tional Conf. on Conceptual Structures, Annecy, France, 2016,1–6.
  3. [3] R. Peng, H. Sun, L. Zanetti, et al., Partitioning well-clusteredgraphs: Spectral clustering works!, Conference on LearningTheory, 46(2), 2017, 1423–1455.
  4. [4] Y. Yang, Y. Wang, X. Xue, et al., A novel spectral clusteringmethod with superpixels for image segmentation, Optik, 127(1),2016, 161–167.
  5. [5] H. Zbib, S. Mouysset, S. Stute, et al., Unsupervised spectralclustering for segmentation of dynamic PET images, IEEETransactions on Nuclear Science, 62(3), 2015, 840–850.
  6. [6] I.S. Dhillon, Co-clustering documents and words using bipartitespectral graph partitioning, Knowledge Discovery and DataMining, San Francisco, America, 2001, 269–274.
  7. [7] V. Mijangos, G. Sierra, A. Montes, et al., Sentence levelmatrix representation for document spectral clustering, PatternRecognition Letters, 85, 2017, 29–34.
  8. [8] C.H. Ding, Unsupervised feature selection via two-way orderingin gene expression analysis, Bioinformatics, 19(10), 2003,1259–1266.
  9. [9] W. Zang, Z. Jiang, L. Ren, et al., Improved spectral clus-tering based on density combining DNA genetic algorithm,International Journal of Pattern Recognition and ArtificialIntelligence, 31(04), 2017, 1750010-1–1750010-23.
  10. [10] F. Ding, J. Wang, J. Ge, et al., Anomaly detection in large-scaletrajectories using hybrid grid-based hierarchical clustering,International Conference on Robotics and Automation, 33(5),2018, 474–480.
  11. [11] R. Langone and J.A. Suykens, Fast kernel spectral clustering,Neurocomputing, 268, 2017, 27–33.
  12. [12] A. Vora and S. Raman, Iterative spectral clustering for unsu-pervised object localization, Pattern Recognition Letters, 106,2018, 27–32.
  13. [13] Y. Xu, Z. Zhuang, W. Li, et al., Effective community divisionbased on improved spectral clustering, Neurocomputing, 279,2017, 54–62.
  14. [14] R. Yu, J. Gao, M. Yu, et al., LSTM-EFG for wind powerforecasting based on sequential correlation features, FutureGeneration Computer Systems, 93, 2019, 33–42.
  15. [15] M. Fiedler, Algebraic connectivity of graphs, CzechoslovakMathematical Journal, 23(23), 1973, 298–305.
  16. [16] P. Perona and W.T. Freeman, A factorization approach togrouping, European Conference on Computer Vision, Freiburg,German, 1998, 655–670.
  17. [17] J. Shi and J. Malik, Normalized cuts and image segmenta-tion, IEEE Transactions on Pattern Analysis and MachineIntelligence, 22(8), 2000, 888–905.
  18. [18] A.Y. Ng, M.I. Jordan, Y. Weiss, et al., On spectral clustering:Analysis and an algorithm, Neural Information ProcessingSystems, Vancouver, Canada, 2001, 849–856.
  19. [19] M. Meila and J. Shi, Learning segmentation by random walks,Neural Information Processing Systems, Denver, America,2000, 873–879.
  20. [20] T.G. Dietterich, Machine learning research: Four currentdirections, AI Magazine, 18(4), 1997, 97–136.
  21. [21] Z. Sun, G. Bebis, R. Miller, et al., Object detection usingfeature subset selection, Pattern Recognition, 37(11), 2004,2165–2176.
  22. [22] F. Zhao, L. Jiao, H. Liu, et al., Spectral clustering with eigen-vector selection based on entropy ranking, Neurocomputing,73(10), 2010, 1704–1717.
  23. [23] N. Rebagliati and A. Verri, Spectral clustering with more thanK eigenvectors, Neurocomputing, 74(9), 2011, 1391–1401.
  24. [24] X. Yang and S. Deb, Cuckoo Search via L´evy flights, Natureand Biologically Inspired Computing, Coimbatore, India, 2009,210–214.
  25. [25] A. Asuncion and D.J. Newman, UCI Machine Learning Repos-itory, 2007, http://www.ics.uci.edu/∼mlearn/MLRepository.html.
  26. [26] H. Chang, D.Y. Yeung, Robust path-based spectral clustering,Pattern Recognition, 41(1), 2008, 191–203.
  27. [27] M. Wu and B. Scholkopf, A local learning approach forclustering, Neural Information Processing Systems, Vancouver,Canada, 2006, 1529–1536.
  28. [28] R.N. Mantegna, Fast, accurate algorithm for numerical simu-lation of L´evy stable stochastic processes, Physical Review E,49(5), 1994, 4677–4683.

Important Links:

Go Back