Luo Xiao, Harutoshi Ogai, Wang Jianhong, and Ricardo A. Ramirez Mendoza
[1] L. Ljung System identification: Theory for user (Upper SaddleRiver, NJ: Prentice Hall, 1999). [2] S. Boyd and L. Vandenberghe Convex optimization (Cambridge: Cambridge University Press, 2004). [3] R. Pintelon and J. Schoukens System identification: A frequency domain approach (New York: IEEE Press, 2001). [4] A. Hagenblad, L. Ljung, and A. Wills, Maximum likelihoodidentification of Wiener models, Automatica, 44, 2008, 2697–2705. [5] F. Gustafsson and R. Karlsson, Generating dithering noise formaximum likelihood estimation from quantized data, Automatica, 49, 2013, 554–560. [6] J.C. Aguero and J.I. Yuz, On the equivalence of time andfrequency domain maximum likelihood estimation, Automatica,46, 2010, 260–270. [7] M.S. Aslam, Maximum likelihood least squares identificationmethod for active noise control systems with autoregressivemoving average noise, Automatica, 69, 2016, 1–11. [8] T. Soderstrom and U. Soverini, Errors in variables identificationusing maximum likelihood estimation in the frequency domain,Automatica, 79, 2017, 131–143. [9] L.B. White and H.X. Vu, Maximum likelihood sequence estimation for Hidder reciprocal process, IEEE Transactions onAutomatic Control, 58, 2013, 2670–2674. [10] R.J. Elliott, Filtering with uncertain noise, IEEE Transactionson Automatic Control, 62, 2017, 876–881. [11] T.T. Georgiou and A. Lindquist, Likelihood analysis of powerspectra and generalized moment problems, IEEE Transactionson Automatic Control, 62, 2017, 4580–4592. [12] R. Hostettler and W. Brirk, Maximum likelihood estimationof the non-parametric FRF for pulse like excitations, IEEETransactions on Automatic Control, 61, 2016, 2276–2281.
Important Links:
Go Back