Amir H. Tavakoli, Seyyed M.M. Dehghan, Adel Abedian, and Hamed Arefkhani
[1] M.A.H. Clarke, Cost effective attitude control validation testmethods for CubeSats applied to PolarCube, Master’s Thesis,Delft University of Technology, 2016. [2] J.L. Schwartz, M.A. Peck, and C.D. Hall, Historical reviewof air-bearing spacecraft simulators, Journal of Guidance,Control, and Dynamics, 26(4), 2003, 513–522. [3] J. Prado, H. Hern´andez, D. Vera, J. Reyes, and J. Prado,Frictionless spacecraft simulator with unrestricted three-axismovement for nanosats, International Journal of Scientific &Technology Research, 7(8), 2018, 84–95. [4] S.J. Chung, Design, implementation and control of a sparseaperture imaging satellite, Ph.D. Diss., Massachusetts Instituteof Technology, 2002. [5] B. Kim, E. Velenis, P. Kriengsiri, and P. Tsiotras, Designinga low-cost spacecraft simulator, IEEE Control Systems, 23(4),2003, 26–37.23 [6] J. Prado, G. Bisiacchi, L. Reyes, E. Vicente, F. Contreras,M. Mesinas, and A. Ju´arez, Three-axis air-bearing basedplatform for small satellite attitude determination and controlsimulation, Journal of Applied Research and Technology, 3(3),2005, 222–237. [7] V.S. Chernesky, Development and control of a three-axis satel-lite simulator for the bifocal relay mirror initiative, Ph.D. Diss.,Monterey, California, Naval Postgraduate School, 2001. [8] H. Figueiredo and O. Saotome, Design of a set of reaction wheelsfor satellite attitude control simulation, 22nd InternationalCongress, Brazil, 2013. [9] W.J. Larson and J.R. Wertz, Space mission analysis and design(No. DOE/NE/32145-T1) (Torrance, CA: Microcosm, Inc.,1992). [10] P. Jelinsky, SNAP reaction wheel size, http://snap.lbl.gov/pub/bscw.cgi/S49d0b4a1/d118194/SNAP-TECH-04025.doc, 2004. [11] N.H. Hansen, Development of a computer balanced motiontable, a ground testing facility for microsatellite attitude controlsystems, Ph.D. Diss., National Library of Canada, 2000. [12] R.C. da Silva, F.C. Guimar˜aes, J.V.L. de Loiola, R.A. Borges,S. Battistini, and C. Cappelletti, Tabletop testbed for atti-tude determination and control of nanosatellites, Journal ofAerospace Engineering, 32(1), 2019, 04018122-1–04018122-10. [13] H. Yun and L. Liu, Rapid development of air bearing three-axis stabilized satellite, IEEE 8th Int. Conf. on CIS & RAM,Ningbo, China, 2017. [14] J. Bhagatji, G. Mohankrishna, S. Nagabhusana, S.A. Asundi,and V.K. Agrawal, Design, simulation and testing of a reactionwheel system for pico/nano-class CubeSat systems, AIAASPACE and Astronautics Forum and Exposition, Orlando, FL,2018. [15] G.Q. Wu, B.J. Lin, and X.L. Chen, Robust adaptive back step-ping fault-tolerant attitude control for small satellite, Mecha-tronic Systems and Control, 40(3), 2012, 177–185. [16] R.W. Johnson and S. Jayaram, A new real-time automatedground health monitoring system at a satellite ground controlstation, Mechatronic Systems and Control, 32(1), 2004, 27–34. [17] P.H. Zipfel, Modeling and simulation of aerospace vehicledynamics (Reston, VA: American Institute of Aeronautics andAstronautics, 2007). [18] A.H. Tavakoli, A. Kalhor, and S.M.M. Dehghan, Implemen-tation of three axis attitude controllers for evaluation of amicro-gravity satellite simulator, Journal of Space Science andTechnology, 5(3), 2012, 59–68 (in Persian). [19] J. Dongwon and P. Tsiotras, A 3-dof experimental test-bedfor integrated attitude dynamics and control research, AIAAGuidance, Navigation, and Control Conference and Exhibit,Austin, Texas, 2003 [20] A.H. Tavakkoli, M. Kabganian, and M. Shahravi, Modelingof attitude control actuator for a flexible spacecraft usingan extended simulation environment, ICCA’05. Int. Conf. onControl and Automation, Budapest, vol. 1, 2005, 147–152. [21] K.H. Decker and K. Kabus, Machine elements function, designand calculation (Munich: Hanser, 2007) (in German).
Important Links:
Go Back