SIMULATION AND EXPERIMENTAL STUDIES OF A MOBILE ROBOT FOR UNDERWATER APPLICATIONS, 10-17.

Arockia Selvakumar Arockia Doss,∗ Deepak Venkatesh,∗∗ and Mark Ovinis∗∗∗

References

  1. [1] R.B. Wynn, V.A.I. Huvenne, T.P. Le Bas, et al. Autonomousunderwater vehicles (AUVs): Their past, present and futurecontributions to the advancement of marine geoscience, MarineGeology, 352, 2014, 451–468.
  2. [2] C.T.F. Ross, A conceptual design of an underwater vehicle,Ocean Engineering, 33(16), 2006, 2087–2104.
  3. [3] S.A. Gafurov and E.V. Klochkov, Autonomous unmanned un-derwater vehicles development tendencies, ProcediaEngineering, 106, 2015, 141–148.
  4. [4] T. Joung, K. Sammut, F. He, and S.-K. Lee, A study on thedesign optimization of an RUV by using computational fluid16dynamic analysis, The Nineteenth International Offshore andPolar Engineering Conf., International Society of Offshore andPolar Engineers, Osaka, Japan, 2009.
  5. [5] J.V.N. De Sousa, A.R.L. de Macedo, W.F. de Amorim Jr, andA.G.B. de Lima, Numerical analysis of turbulent fluid flowand drag coefficient for optimizing the RUV hull design, OpenJournal of Fluid Dynamics, 4(03), 2014, 263.
  6. [6] M. Manjunatha, A.A. Selvakumar, V.P. Godeswar, and R.Manimaran, A low cost underwater robot with grippers for vi-sual inspection of external pipeline surface, Procedia ComputerScience, 133, 2018, 108–115.
  7. [7] Z.Q. Leong, D. Ranmuthugala, I. Penesis, and H. Nguyen,Quasi-static analysis of the hydrodynamic interaction effects onan autonomous underwater vehicle operating in proximity toa moving submarine, Ocean Engineering, 106, 2015, 175–188.
  8. [8] Z.Q. Leong, D. Ranmuthugala, A.L. Forrest, and J. Duffy,Numerical investigation of the hydrodynamic interaction be-tween two underwater bodies in relative motion, Applied OceanResearch, 51, 2015, 14–24.
  9. [9] S. Kumar, A. Selvakumar, and P. Nalini, Development ofautonomous robot for underwater applications, InternationalJournal of Control Theory and Applications, 9(13), 2016,6249–6260.
  10. [10] E.A. De Barros, A. Pascoal, and E. de Sa, Investigation of amethod for predicting RUV derivatives, Ocean Engineering,35(16), 2008, 1627–1636.
  11. [11] J.L.D. Dantas and E.A. de Barros, Numerical analysis ofcontrol surface effects on AUV manoeuvrability, Applied OceanResearch, 42, 2013, 168–181.
  12. [12] L. Wu, Y. Li, S. Su, P. Yan, and Y. Qin, Hydrodynamicanalysis of RUV underwater docking with a cone-shaped dockunder ocean currents, Ocean Engineering, 85, 2014, 110–126.
  13. [13] S. Gomatam, S. Vengadesan, and S.K. Bhattacharyya, Nu-merical simulations of flow past an autonomous underwatervehicle at various drift angles, Journal of Naval Architectureand Marine Engineering, 9(2), 2012, 135–152.
  14. [14] O. Saout and P. Ananthakrishnan, Hydrodynamic and dynamicanalysis to determine the directional stability of an underwatervehicle near a free surface, Applied Ocean Research, 33(2),2011, 158–167.
  15. [15] Y.-c. Pan, H.-x. Zhang, and Q.-d. Zhou, Numerical predictionof submarine hydrodynamic coefficients using CFD simulation,Journal of Hydrodynamics, Series B, 24(6), 2012, 840–847.
  16. [16] J.L.D. Dantas and E.A. de Barros, A real-time simulator forAUV development, ABCM Symposium Series in Mechatronics,Gramado, RS, Brazil, vol. 4, 2010, 499–508.
  17. [17] B. Allotta, A. Caiti, L. Chisci, et al., Development of a navi-gation algorithm for autonomous underwater vehicles, IFAC-PapersOnLine, 48(2), 2015, 64–69.
  18. [18] D. Zhu, C. Cheng, and B. Sun, An integrated AUV pathplanning algorithm with ocean current and dynamic obstacles,International Journal of Robotics and Automation, 31(5), 2016,382–389.
  19. [19] H. Yu, A. Shen, and Y. Su, Continuous motion planningin complex and dynamic underwater environments, Inter-national Journal of Robotics and Automation, 30(2), 2015.10.2316/Journal.206.2015.2.206-4279.
  20. [20] A. Jebelli, M.C.E. Yagoub, and B.S. Dhillon, Design and controlof underwater robots with rotating thrusters, InternationalJournal of Robotics and Automation (IJRA), 5(4), 2016,284–294. ISSN: 2089-4856.
  21. [21] S. Garrido, L. Moreno, D. Blanco, and P. Jurewicz, Pathplanning for mobile robot navigation using Voronoi diagramand fast marching, International Journal of Robotics andAutomation (IJRA), 2(1), 2011, 42–64.
  22. [22] K. Alam, T. Ray, and S.G. Anavatti, Design and constructionof an autonomous underwater vehicle, Neurocomputing, 142,2014, 16–29.
  23. [23] M.S.M. Aras, H.A. Kasdirin, M.H. Jamaluddin, M.F. Basar,and U. Elektrik, Design and development of an autonomousunderwater vehicle (AUV-FKEUTeM), In Proceedings ofMUCEET2009 Malaysian Technical Universities Conferenceon Engineering and Technology, MUCEET2009, MS Garden,Kuantan, Pahang, Malaysia, 2009, 1–5.
  24. [24] P.N. Joubert, Some aspects of submarine design. Part 2. Shapeof a submarine 2026. No. DSTO-TR-1920, Defence Scienceand Technology Organisation Victoria (AUSTRALIA), 2006.
  25. [25] Z.M. Zain and S.B.M. Rawi, A drift force on submerged bodyin AUV design, Journal of Electrical, Electronics, Control andInstrumentations Engineering, 1(2), 2016, 10–15.
  26. [26] P. Stevenson, M. Furlong, and D. Dormer, RUV shapes com-bining the practical and hydrodynamic considerations, Oceans2007-Europe, Aberdeen, Scotland, IEEE, 2007, 1–6.

Important Links:

Go Back