A CRANE GEARBOX FAULT DIAGNOSIS METHOD INCORPORATING SVM AND MULTI-CASE MIGRATION LEARNING, 91-100.

Xin Zheng

References

  1. [1] H. Habbouche, Y. Amirat, T. Benkedjouh, and M. Benbouzid,Bearing fault event-triggered diagnosis using a variationalmode decomposition-based machine learning approach, IEEETransactions on Energy Conversion, 37(1), 2022, 466–474.
  2. [2] D.C. Li, M. Zhang, T. Kang, B. Li, H. Xiang, K. S. Wang,Z. Pei, X. Tang, and P. Wang, Fault diagnosis of rotatingmachinery based on dual convolutional-capsule network (DC-CN), Measurement, 2(187), 2022, 1–16.
  3. [3] B. Guo, and Y. Chen, Fuzzy robust fault-tolerant controlfor offshore ship-mounted crane system, Information Sciences,526(1), 2020, 119–142.99
  4. [4] B. Zhao, X. Zhang, L. Hai, and Z.B. Yang, Intelligentfault diagnosis of rolling bearings based on normalized CNNconsidering data imbalance and variable, Knowledge-BasedSystems, 199(8), 2020, 321–336.
  5. [5] S. Lee, J. Yang, P. Forooghi, S. Alexander, B. Shervin, and J.Yang, Predicting drag on rough surfaces by transfer learningof empirical correlations, Journal of Fluid Mechanics, 933(2),2022, 18–39.
  6. [6] Q. Xu, B. Zhu, H. Huo, Z. Meng, J. Li, F.J. Fan, and L.Cao, Fault diagnosis of rolling bearing based on online transferconvolutional neural network, Applied Acoustics, 192(8), 2022,411–420.
  7. [7] S.C. Lin, Y. Su, G. Liang, Y. Zhang, J. Nathan, and Y. Zhang,Estimating cluster masses from SDSS multi-band images withtransfer learning, Monthly Notices of the Royal AstronomicalSociety, 512(3), 2022, 3885–3894.
  8. [8] L.A. Briceno-Mena, J.A. Romagnoli, and C.G. Arges,PemNet: A transfer learning-based modeling approach of high-temperature polymer electrolyte membrane electrochemicalsystems, Industrial and Engineering Chemistry Research,61(9), 2022, 3350–3357.
  9. [9] J. Yu, and H. Liu, Sparse coding shrinkage in intrinsic time-scaledecomposition for weak fault feature extraction of bearings,IEEE Transactions on Instrumentation and Measurement,67(7), 2018, 1579–1592.
  10. [10] M. He and D. He, A new hybrid deep signal processingapproach for bearing fault diagnosis using vibration signals,Neurocomputing, 396(5), 2020, 542–555.
  11. [11] S. Xi, H. Cao, and X. Chen, Dynamic modeling ofspindle bearing system and vibration response investigation,Mechanical Systems and Signal Processing, 114(2), 2019,486–511.
  12. [12] C. Wang, H. Li, G. Huang, and J. Ou, Early fault diagnosisfor planetary gearbox based on adaptive parameter optimizedvmd and singular kurtosis difference spectrum, IEEE Access,7(3), 2019, 31501–31516.
  13. [13] M. Huang, Y. Ma, J. Wan, and X. Chen, A sensor-software basedon a genetic algorithm-based neural fuzzy system for modelingand simulating a wastewater treatment process, Applied SoftComputing, 27, 2015, 1–10.
  14. [14] K. Xu, S. Li, X. Jiang, Z. An, and T. Yu, A renewable fusionfault diagnosis network for the variable speed conditions underunbalanced samples, Neurocomputing, 379(28), 2020, 12–29.
  15. [15] J. Sun, C. Yan, and J. Wen, Intelligent bearing faultdiagnosis method combining compressed data acquisition anddeep learning, IEEE Transactions on Instrumentation andMeasurement, 67(1), 2018, 185–195.
  16. [16] Z. Xiang, X. Zhang, W. Zhang, and X. Xia, Fault diagnosis ofrolling bearing under fluctuating speed and variable load basedon TCO spectrum and stacking auto-encoder, Measurement,138(2), 2019, 162–174.
  17. [17] G. Angiulli and M. Versaci, A Neuro-fuzzy network forthe design of circular and triangular equilateral microstripantennas, International Journal of Infrared and MillimeterWaves, 23(10), 2002, 1513–1520.
  18. [18] R. Xia, S. Gao, and D. Zhao, A Terminal sliding mode learningcontrol for a class of uncertain non-linear systems, MechatronicSystems and Control, 50(2), 2022, 87–95.
  19. [19] S. Murali, K. Lokesha, and R. George, Path following and flightcharacteristics evaluation of trajectory tracking algorithms inUAV navigation, Mechatronic Systems and Control, 50(1),2022, 22–27.
  20. [20] L. Guo, Y. Lei, S. Xing, T. Yan, and N. Li, Deep convolutionaltransfer learning network: a new method for intelligent faultdiagnosis of machines with unlabeled data, IEEE Transactionson Industrial Electronics, 66(9), 2019, 7316–7325.
  21. [21] M. Azamfar, J. Singh, X. Li, and J. Lee, Cross-domaingearbox diagnostics under variable working conditions withdeep convolutional transfer learning, Journal of Vibration andControl, 27(8), 2021, 854–864.
  22. [22] G. Shao, Intelligent vehicle control system based on cloudcomputing and Internet of Things, Mechatronic Systems andControl, 49(4), 2021, 245–250.
  23. [23] S. Shao, S. McAleer, R. Yan, and P. Baldi, Highlyaccurate machine fault diagnosis using deep transfer learning,IEEE Transactions on Industrial Informatics, 15(4), 2019,2446–2455.
  24. [24] H. Chen and J. Ye, Trajectory tracking control system ofwheeled mobile robot based on PID feed-forward, MechatronicSystems and Control, 50(2), 2022, 109–114.
  25. [25] L. Wen, L. Gao, and X. Li, A new deep transfer learning basedon sparse auto-encoder for fault diagnosis, IEEE Transactionson Systems, Man and Cybernetics. Systems, 49(1), 2019,136–144.

Important Links:

Go Back