MULTI-MODEL FUSION CONTROL FOR ENHANCED ROBUSTNESS AND COMPLIANCE IN HUMANOID ROBOT LOCOMOTION

Anding Xu∗,∗∗ , Huishen Zhu∗,∗∗,∗∗∗ , Ke Su∗,∗∗ , Yuqi Zhou∗,∗∗ , Jin Guo∗,∗∗ , Hongwu Wang∗,∗∗ , Zhiyong Jiang∗,∗∗ , and Yifan Liu∗,∗∗

References

  1. [1] F. Samadi, S. Khanmohammadi, and R.G. Amir, Foot and bodycontrol of humanoid robots using fuzzy controller, InternationalJournal of Robotics and Automation, 32(4), 2017, 317–324.
  2. [2] C. Kuppan, G. Deenadayalan, A.D. Joshuva, M. Mohan, Designand development of 6 DOF bipedal robot and its walking gaits,International Journal of Robotics and Automation, 36(1), 2021,44–52.
  3. [3] W. Baoyuan., S. Fei., R. Yang., J. Luo, and Z. Wu, Developmentof an integrated perceptual foot system for humanoid robots,International Journal of Robotics and Automation, 27(3), 2012,217–228.
  4. [4] A.D. Ames., E.A. Cousineau., and M.J. Powell, Dynamicallystable bipedal robotic walking with NAO via human-inspiredhybrid zero dynamics, in Proceeding of the ACM InternationalConference on Hybrid Systems: Computation and Control,Beijing, 2012, 135–144.
  5. [5] N. Aphiratsakun and M. Parnkhkun, Balancing control ofleg exoskeleton using ZMP-based Jacobian compensation,International Journal of Robotics and Automation, 36(3), 2021,181–188.
  6. [6] E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi,and B. Morris, Feedback Control of Dynamic Bipedal RobotLocomotion. (Boca Raton, FL: CRC Press, 2018).
  7. [7] G. Xin, H.-C. Lin, J. Smith, O. Cebe, and M. Mistry, A model-based hierarchical controller for legged systems subject toexternal disturbances, in Proceeding of the IEEE InternationalConference on Robotics and Automation, Brisbane, 2018,4375–4382.
  8. [8] S. Kolathaya, Local stability of PD controlled bipedal walkingrobots, Automatica, 114(4), 2020, 108841–108847.
  9. [9] J.P. Reher, A. Hereid, S. Kolathaya. C.M. Hubicki, andA.D. Ames, Algorithmic foundations of realizing multi-contact locomotion on the humanoid robot DURUS, inAlgorithmic Foundations of Robotics XII (Springer Pro-ceedings in Advanced Robotics), 13. Cham: Springer, 2020,400–415.
  10. [10] C. Ding, L. Zhou, X. Rong, Y. Li, and J. Gu, A lateralimpact recovery method for quadruped robot with stepheight compensation, International Journal of Robotics andAutomation, 35(3), 2020, 199–208.
  11. [11] Z. Hua, X. Rong, Y. Sun, Y. Li, H. Chai, and C. Wang,A novel passive compliance method for hydraulic servo actuatorapplied on quadruped robots, International Journal of Roboticsand Automation, 37(1), 2022, 76–87.
  12. [12] N. Rahimi and T. Binazadeh, Observer-based output consensusof multi-agent systems with input delay based on modelpredictive control, Circuits Systems, and Signal Processing,43, 2024, 4145–4164.
  13. [13] O.Y. Ismael, M. Almaged, and A.I. Abdulla, Nonlin-ear model predictive control-based collision avoidance formobile robot, Journal of Robotics and Control, 5(1), 2024,142–151.
  14. [14] A. Herdt, H. Diedam, P.B. Wieber, D. Dimitrov, K. Mombaur,and M. Diehl, Online walking motion generation withautomatic footstep placement, Advanced Robotics, 24(5), 2010,719–737.
  15. [15] B. Henze, C. Ott, and M.A. Roa, Posture and balancecontrol for humanoid robots in multi-contact scenarios basedon model predictive control, in Proceeding of the IEEE/RSJInternational Conference on Intelligent Robots and Systems,2014, 3253–3258.
  16. [16] M. Neunert, M. St¨auble, M. Giftthaler, C.D. Bellicoso,J. Carius, C. Gehring, M. Hutter, and J. Buchli, Whole-body nonlinear model predictive control through contacts forquadrupeds, IEEE Robotics and Automation Letters, 3(3),2018, 1458–1465.
  17. [17] G. Garc´ıa, R. Griffin, and J. Pratt, Time-varyingmodel predictive control for highly dynamic motions ofquadrupedal robots, in Proceeding of the IEEE InternationalConference on Robotics and Automation, Xi’an, 2021,7344–7349.11
  18. [18] J. Di Carlo, P.M. Wensing, B. Katz, G. Bledt, and S. Kim,Dynamic locomotion in the MIT Cheetah 3 through convexmodel-predictive control, in Proceeding of the IEEE/RSJInternational Conference on Intelligent Robots and Systems,Madrid, 2018, 1–9.
  19. [19] Y. Ding, C. Khazoom, M. Chignoli, and S. Kim, Orientation-aware model predictive control with footstep adaptation fordynamic humanoid walking, in Proceeding of the IEEE-RAS21st International Conference on Humanoid Robots, Ginowan,2022, 299–30.
  20. [20] G. Bledt, P.M Wensing, and S. Kim, Policy-regularizedmodel predictive control to stabilize diverse quadrupedal gaitsfor the MIT cheetah, IEEE/RSJ International ConferenceIntelligent Robots and Systems, Vancouver, BC, 2017,4102–4109.
  21. [21] D. Carlo and J. Jared, Software and Control Design for theMIT Cheetah Quadruped Robots. (Boston, MA: MassachusettsInstitute of Technology, 2020).
  22. [22] B. Katz, J.D. Carlo, and S. Kim, Mini Cheetah: A platform forpushing the limits of dynamic quadruped control, in Proceedingof the International Conference on Robotics and Automation,Montreal, QC, 2019, 6295–6301.
  23. [23] G. Chen, S. Guo, B. Hou, and J. Wang, Virtual modelcontrol for quadruped robots, IEEE Access, 8, 2020,140736–147051.
  24. [24] V. Morlando, A. Teimoorzadeh, and F. Ruggiero. Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots, Mechanism and MachineTheory, 164, 2021, 13247–13267.

Important Links:

Go Back