F. Assous∗
[1] E. Sonnendr¨ucker, J. Roche, P. Bertrand, & A. Ghizzo,The semi-Lagrangian method for the numerical resolutionof Vlasov equation, Journal of Computational Physics, 149,1996, 841–872. [2] O. Coulaud, E. Sonnendr¨ucker, E. Dillon, P. Bertrand, &A. Ghizzo, Parallelisation of semi-Lagrangian Vlasov codes,Journal Computational Physics, 61, 1999, 435–448. [3] P.A. Raviart, An analysis of particle methods (Berlin:Springer Verlag, 1985). [4] T. Weiland, Time domain electromagnetic field computa-tion with finite difference methods, International Journal ofNumerical Modelling, 9, 1996, 295–319. [5] K.S. Yee, Numerical solution of initial boundary value prob-lems involving Maxwell’s equations in isotropic media, IEEETransactions on Antennas and Propagation, 14, 1966, 302–307. [6] A.C. Cangellaris & D.B. Wright, Analysis of the numericalerror caused by the stair-stepped approximation of a conduct-ing boundary in FDTD simulations of electromagnetic phe-nomena, IEEE Transactions on Antennas and Propagation,39, 1991, 1518–1525. [7] P. Ricci, G. Lapenta, & J.U. Brackbill, A simplified implicitMaxwell solver, Journal of Computational Physics, 183, 2002,117–141. [8] D. Kondrashov, J. Wang, & P.C. Liewer, A study of stabilityand enery conservation of a 3-D electromagnetic PIC code fornon-orthogonal meshes, Proc. IEEE International Conferenceon Plasma Science, San Diego, CA, USA, 1997, 187–192. [9] F. Hermeline, Two coupled particle-finite volume methodsusing Delaunay-Voronoi meshes for the approximation ofVlasov-Poisson and Vlasov-Maxwell equations, Journal ofComputational Physics, 106(1), 1993, 1–18. [10] G.L. Meur & F. Touze, Implementation of a mixed finite ele-ment in a particle method, Proc. Mathematical and Numer-ical Aspects of Wave Propagation Phenomena, Strasbourg,France, 1991, 752–754. [11] J. Ambrosiano, S.T. Brandon, & R. Lohner, A new weightedresidual finite element method for computational electromag-netics in the time domain, Proc. Annual review of Progressin Applied Computational Electromagnetics, Monterey, CA,USA, 1991, 123–136. [12] D.R. Lynch & K.D. Paulsen, Time domain integration of theMaxwell equations on finite elements, IEEE Transactions onAntennas and Propagation, 38, 1990, 1933–1959. [13] C.K. Birdsall & A.B. Langdon, Plasmas physics via computersimulation (New York: Mac.Graw-Hill, 1985). [14] K. M¨uller, Foundations of the mathematical theory of elec-tromagnetic waves (Berlin: Springer Verlag, 1969). [15] F. Assous, P. Degond, & J. Segr´e, A particle-tracking methodfor the 3D electromagnetic PIC codes on unstructured meshes,Computer Physics Communications, 72, 1992, 105–114. [16] J.P. Boris, Relativistic plasma simulations - optimization of ahybrid code, Proc. 4th Conference on Numerical Simulationof Plamas, Naval Res. Lab., Washington D.C., 1970, 3–67. [17] B. Marder, A method incorporating Gauss’ law into electro-magnetic PIC codes, Journal of Computational Physics, 68,1987, 48–55. [18] B.N. Jiang, J. Wu, & L.A. Povinelli, The origin of spu-rious solutions in computational electromagmetics, JournalComputational Physics, 125, 1996, 104–123. [19] F. Kemm, C.-D. Munz, R. Schneider, & E. Sonnendr¨ucker,Divergence corrections in the numerical simulation of electro-magnetic wave propagation, Proc. 8th International Confer-ence on Hyperbolic problems, Magdebourg, Germany, 2001,603–612. [20] F. Assous, P. Degond, E. Heintz´e, P.A. Raviart, & J. Segr´e,On a finite element method for solving the three dimen-sional Maxwell equations, Journal of Computational Physics,109(2), 1993, 222–237. [21] V. Girault & P.A. Raviart, Finite element methods forNavier–Stokes equations. Theory and Algorithms (Amster-dam: North-Holland, 1983). [22] M. Fortin & R. Glowinski, Augmented lagrangian methods(New York/Berlin: Springer Series in Computational Math-ematics 5, 1986). [23] G. Cohen, Higher order numerical methods for transient waveequations (New-York: Springer Verlag, 2002).
Important Links:
Go Back