VISUAL SALIENCY-BASED MOTION DETECTION TECHNIQUE FOR MOBILE ROBOTS

Binghua Guo, Hongyue Dai, and Zhonghua Li

References

  1. [1] L. Maddalena and A. Petrosino, A self-organizing approachto background subtraction for visual surveillance applica-tions, IEEE Transactions on Image Processing, 17(7), 2008,1168–1177.
  2. [2] R.J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, Im-age change detection algorithms: A systematic survey, IEEETransactions on Image Processing, 14(3), 2005, 294–307.
  3. [3] S. Mota, E. Ros, E.M. Ortigosa, and F.J. Pelayo, Bio-inspiredmotion detection for a blind spot overtaking monitor, Inter-national Journal of Robotics and Automation, 19(4), 2004,190–196.
  4. [4] Q. Baig, M. Perrollaz, and C. Laugier, A robust motion detec-tion technique for dynamic environment monitoring: A frame-work for grid-based monitoring of the dynamic environment,IEEE Robotics & Automation Magazine, 21(1), 2014, 40–48.
  5. [5] M. Kamaraj, Balakrishnan, An improved motion detectionand tracking of active blob for video surveillance, Proc. 4thICCCNT, Tiruchengode, India, 2013, 1–7.
  6. [6] T. Moeslund, A. Hilton, and V. Kruger, A survey of advancesin vision-based human motion capture and analysis, ComputerVision and Image Understanding, 104(2–3), 2006, 90–126.
  7. [7] O. Marques, L.M. Mayron, G.B. Borba, and H.R. Gamba,An attention-driven model for grouping similar images withimage retrieval applications, EURASIP Journal of Advancesin Signal Processing, 2007(1) 2007, 1–17.
  8. [8] D. ´Culibrk, M. Mirkovi´c, V. Zlokolica, M. Pokri´c, V. Crnojevi´c,and D. Kukolj, Salient motion features for video qualityassessment, IEEE Transactions on Image Processing, 20(4),2011 948–958.
  9. [9] Y. Yu, J. Gu, G.K. Mann, R.G. Gosine, Development andevaluation of object-based visual attention for automatic per-ception of robots, IEEE Transactions on Automation Scienceand Engineering, 10(2), 2013, 365–379.
  10. [10] L. Itti, C. Koch, and E. Niebur, A model of saliency-basedvisual attention for rapid scene analysis, IEEE Transactionson Pattern Analysis and Machine Intelligence, 20(11), 1998,1254–1259.
  11. [11] Y. Wakuda, K. Sekiyama, and T. Fukuda, Dynamic eventinterpretation and description from visual scene based oncognitive ontology for recognition by a robot, InternationalJournal of Robotics & Automation, 24(3), 2009, 263–279.
  12. [12] A. Kimura, R. Yonetani, T. Hirayama, Computational modelsof human visual attention and their implementations: A survey,IEICE Transactions on Information and Systems, E96–D(3),2013, 562–578.
  13. [13] S. Frintrop, E. Rome, H.I. Christensen, Computational visualattention systems and their cognitive foundations: A survey,ACM: Transaction on Applied Perception, 7(1), 2010, 1–39.
  14. [14] C. Koch, S. Ullman, Shifts in selective visual attention: towardsthe underlying neural circuitry, Human Neurobiology, 4(4),1985, 219–227.
  15. [15] L. Itti and P. Baldi, Bayesian surprise attracts human attention,Vision Research, 49(10), 2009, 1295–306.
  16. [16] P. Baldi and L. Itti, Of bits and wows: A Bayesian theoryof surprise with applications to attention, Neural Networks,23(5), 2010, 649–666.
  17. [17] M.T. L´opez, M.A. Fern´andez, A. Fern´andez-Caballero, J. Mira,and A. Delgado, Dynamic visual attention model in imagesequences, Image and Vision Computing, 25(5), 2007, 597–613.
  18. [18] M. Mancas, N. Riche, J. Leroy, and B. Gosselin, Abnormalmotion selection in crowds using bottom-up saliency, Proc.18th IEEE Int. Conf. on Image Processing, Brussels, Belgium,2011, 229–232.
  19. [19] D. Culibrk, S. Sladojevic, N. Riche, M. Mancas, and V.Crnojevic, Data-driven approach to dynamic visual attentionmodelling, Proc. SPIE, Brussels, Belgium, 2012, 84360N1-11.
  20. [20] A. Bur. Computer models of dynamic visual attention, DoctoralDissertation, Universit´e de Neuchatel, Switzerland, 2009.
  21. [21] A. Bur, P. Wurtz, R.M. M¨uri, and H. H¨ugli, Dynamic visualattention: Motion direction versus motion magnitude, Proc.IS&T/SPIE 20th Annual Symposium on Electronic Imaging,San Jose, USA, 2008, 1–12.
  22. [22] R. Szeliki, Computer vision: algorithms and applications, 1sted. (USA: Springer, 2010).
  23. [23] M. Zuliani, C.S. Kenney, and B.S. Manjunath, The multi-RANSAC algorithm and its application to detect planar ho-mographies, Proc. of IEEE Computer Society Conference onComputer Vision and Pattern Recognition. San Diego, USA,2005, 153–156.
  24. [24] D. Comaniciu and P. Meer, Mean shift: a robust approachtoward feature space analysis, IEEE Transactions on PatternAnalysis and Machine Intelligence, 24(5), 2002, 603–619.
  25. [25] A. Murarka. Building safety maps using vision for safe localmobile robot navigation, Doctoral Dissertation, The Universityof Texas at Austin, Austin, 2009.
  26. [26] D.G. Lowe. Distinctive image features from scale-invariantkeypoints, International Journal of Computer Vision, 60(2),2004, 91–110.
  27. [27] H. Bay, T. Tuytelaars, and L. Van Gool, Surf: speededup robust features, Proc. European Conf. Computer Vision,Berlin, Springer, 2006, 404–417.

Important Links:

Go Back