Yonghui Yang, Wangbao Xu, Genxi Rong, Xiaoping Liu, and Xuebo Chen
[1] P. Jimenez Andrioli, B. Shirinzadeh, D. Oetomo, and A.Nicholson, Swarm aggregation and formation control for robotswith limited perception, International Journal of robotics andAutomation, 26(3), 2011, 255–263. [2] Y. Zhuang, K. Wang, W. Wang, and H.S. Hu, A hybridsensing approach to mobile robot localization in complexindoor environment, International Journal of robotics andAutomation, 27(2), 2012, 198–205. [3] Y. Zhuang, Z. Wang, H. Yu, et al., A robust extended H∞filtering approach to multi-robot cooperative localization indynamic indoor environments, Control Engineering Practice,21(7) 2013, 953–961. [4] N. Miyata, J. Ota, T. Arai, et al., Cooperative transportby multiple mobile robots in unknown static environmentsassociated with real-time task assignment, IEEE Transactionson Robotics and Automation, 18(5), 2002, 769–780. [5] Z.D. Wang, E. Nakano, and T. Takahashi, Solving functiondistribution and behavior design problem for cooperative objecthandling by multiple mobile robots, IEEE Transactions onSystems, Man, and Cybernetics-Part A: Systems and Human,33(5), 2003, 537–549. [6] G.A.S. Pereira, V. Kumar, and M.F.M. Campos, Decentral-ized algorithm for multi-robot manipulation via caging, TheInternational Journal of Robotics Research, 23, 2004, 783–795. [7] D. Sieber, F. Deroo, and S. Hirche, Formation-based approachfor multi-robot cooperative manipulation based on optimalcontrol design, Proc. IEEE/RSJ Int. Conf. Intelligent Robotsand Systems, Tokyo, Japan, 2013, 5227–5233. [8] M.H. Wu, A. Konno, S. Ogawa, et al., Symmetry cooperativeobject transportation by multiple humanoid robots, Proc.IEEE Int. Conf. Robotics and Automation, Hong Kong, China,2014, 3446–3451. [9] F. Yang, S.R. Liu, and F. Liu, Cooperative transport strategyfor formation control of multi mobile robots, Journal of Zhe-jiang University-Science C (Computers & Electronics), 11(12),2010, 931–938. [10] J.N. Chen, M. Gauci, W. Li, et al., Occlusion-based cooperativetransport with a swarm of miniature mobile robots, IEEETransactions on Robotics, 31(2), 2015, 307–321. [11] Y. Wang, P.G.D. Siriwardana, and C.W. de Silva, Multi-robotcooperative transportation of objects using machine learning,International Journal of Robotics and Automation, 26(4), 2011,369–375. [12] Z.D. Wang and V. Kumar, Object closure and manipulationby multiple cooperating mobile robots, Proc. IEEE Int. Conf.Robotics and Automation, Washington, DC, USA, 2002, 394–399. [13] Y. Nakamura, K. Nagai, and T. Yoshikawa, Dynamics andstability in coordination of multiple robotic mechanisms, TheInternational Journal of Robotics Research, 8(2), 1989, 44–61. [14] D. Rus, Coordinated manipulation of objects in a plane,Algorithmica, 19(1/2), 1997, 129–147. [15] Z.D. Wang, Y. Hirata, and K. Kosuge, Control a rigid cagingformation for cooperative object transportation by multiplemobile robots, Proc. IEEE Int. Conf. Robotics and Automation,New Orleans, LA, USA, 2004, 1580–1585. [16] K.M. Lynch and M.T. Mason, Stable pushing: Mechanics,controllability, and planning, The International Journal ofRobotics Research, 15(6), 1996, 533–556. [17] L.E. Parker, Alliance: An architecture for fault tolerant mul-tirobot cooperation, IEEE transactions on Robotics and Au-tomation, 14(2), 1998, 220–240. [18] E. Rimon and A. Blake, Caging planar bodies by one-parametertwo fingered gripping systems, The International Journal ofRobotics Research, 18(3), 1999, 299–318. [19] A. Sudsang, F. Rothganger, and J. Ponce, Motion planning fordisc-shaped robots pushing a polygonal object in the plane,IEEE Transactions on Robotics and Automation, 18(4), 2002,550–562. [20] Z.D. Wang and V. Kumar, A decentralized test algorithm forobject closure by multiple cooperating mobile robots, in M. AniHsieh and Gregory Chirikjian (eds.), Distributed autonomousrobotic systems, vol. 5 (New York: Springer-Verlag, 2002),165–174. [21] R. Fierro, A. Das, et al., Hybrid control of formations of robots,Proc. IEEE Int. Conf. Robotics and Automation, Seoul, SouthKorea, 2001, 157–162. [22] T. Wang, C. Sabourin, and K. Madani, A novel path planningapproach for multi-robot based transportation, InternationalJournal of Robotics and Automation, 28(3), 2013, 218–225. [23] T.Y. Huang, X.N. Wang, and X.B. Chen, Multirobot time-optimal handling method based on formation control, Journalof System Simulation, 22(6), 2010, 1442–1446. [24] W.B. Xu, X.P. Liu, X.B. Chen, et al., Improved artificialmoment method for decentralized local path planning of multi-robot, IEEE Transactions on Control Systems Technology,23(6), 2015, 2383–2390. [25] W.B. Xu, J. Zhao, X.B. Chen, et al., Artificial moment methodusing attractive-points for the local path planning of a singlerobot in complicated dynamic environments, Robotica, 31(11),2013, 1263–1274. [26] W.B. Xu, X.B. Chen, J. Zhao, et al., Function-segment artificialmoment method for sensor-based path planning of single robotin complex environments, Information Sciences, 280, 2014,64–81. [27] W.B. Xu and X.B. Chen, A dynamical formation control ap-proach based on artificial moments, Control Theory & Appli-cations, 26(11), 2009, 1232–1238 (In Chinese).
Important Links:
Go Back