PREOPERATIVE SURGICAL PLANNING FOR ROBOT-ASSISTED LIVER TUMOUR ABLATION THERAPY BASED ON COLLISION-FREE REACHABLE WORKSPACES

Shaoli Liu, Jianhua Liu, Jing Xu, Xiaoyu Ding, Tong Lu, and Ken Chen

References

  1. [1] A. Jacobs, Radiofrequency ablation for liver cancer, RadiologicTechnology, 86(6), 2015, 645–664.
  2. [2] J. Xu, Z.Z. Jia, Z.J. Song, X.D. Yang, et al., Three-dimensionalultrasound image-guided robotic system for accurate microwavecoagulation of malignant liver tumors, International Journal ofMedical Robotics and Computer Assisted Surgery, 6(3), 2010,256–268.
  3. [3] M. Peterhans, A. vom Berg, B. Dagon, D. Inderbitzin, et al.,A navigation system for open liver surgery: Design, workflowand first clinical applications, International Journal of MedicalRobotics and Computer Assisted Surgery, 7(1), 2011, 7–16.
  4. [4] N. Shevchenko, B. Seidl, J. Schwaiger, M. Markert, et al.,MiMed Liver: A planning system for liver surgery, 32nd Annu.Int. Conf. IEEE EMBS, Buenos Aires, 2010, 1882–1885.
  5. [5] J. Schwaiger, M. Markert, B. Seidl, N. Shevchenko, et al., Riskanalysis for intraoperative liver surgery, 32nd Annu. Int. Conf.IEEE EMBS, Buenos Aires, 2010, 410–413.
  6. [6] Y.W. Chen, M. Kaibori, T. Shindo, K. Miyawaki, et al.,Computer-aided liver surgical planning system using CT vol-umes, 32nd Annu. Int. Conf. IEEE EMBS, Osaka, 2013,2360–2363.
  7. [7] Y. Zhong, B. Shirinzadeh, J. Smith, Soft tissue deformationwith neural dynamics for surgery simulation, InternationalJournal of Robotics & Automation, 22(1), 2007, 1–9.
  8. [8] V.M. Banz, P.C. M¨uller, P. Tinguely, D. Inderbitzin, et al.,Intraoperative image-guided navigation system: Developmentand applicability in 65 patients undergoing liver surgery, Lan-genbeck’s Archives of Surgery, 401(4), 2016, 495–502.
  9. [9] B. Abdullah, C. Yeong, K. Goh, B. Yoong, et al., Robotic-assisted thermal ablation of liver tumours, European Radiology,25(1), 2015, 246–257.
  10. [10] M.A. Scherer and D.A. Geller, New preoperative images,surgical planning, and navigation, in Y. Fong, P. Giulianotti,J. Lewis, B. K. Groot, and T. Reiner (eds.), Imaging andVisualization in The Modern Operating Room, (New York:Springer-Verlag, 2015), 342–366.
  11. [11] B. Chebbi, D. Lazaroff, and P.X. Liu, A collaborative virtualhaptic environment for surgical training and tele-mentoring,International Journal of Robotics & Automation, 22(1), 2007,69–78.
  12. [12] S. Cristina, G. Gorka, G. Purificacion, G. Tomas, et al., Person-alized surgical planning to support interventions and training ofsurgeons, Clinical Image-Based Procedures, Planning to Inter-vention Lecture Notes in Computer Science, 7761, 2013, 83–90.
  13. [13] 3D Slicer. Available at: http://www.slicer.org.
  14. [14] Available at: neromate.http://www.renishaw.com/en/neuromate-the-no-1-image-guided-neurosurgical-robot–10712.
  15. [15] M. Hayashibe, N. Suzuki, M. Hashizume, Y. Kakeji, et al.,Preoperative planning system for surgical robotics setup withkinematics and haptics, International Journal of MedicalRobotics and Computer Assisted Surgery, 1(2), 2005, 76–85.
  16. [16] L.B. Rosenberg, Virtual fixtures: Perceptual tools for teler-obotic manipulation, IEEE Virtual Reality Annual Int. Symp.,Seattle, WA, USA, 1993, 76–82.
  17. [17] J.J. Abbott, P. Marayong, and A.M. Okamura, Haptic virtualfixtures for robot-assisted manipulation, Springer Tracts inAdvanced Robotics, 28, 2007, 49–64.
  18. [18] T. Xia, A. Kapoor, P. Kazanzides, and R. Taylor, A con-strained optimization approach to virtual fixtures for multi-robot collaborative teleoperation, 2011 IEEE/RSJ Int. Conf.Intelligent Robots and Systems, Francisco CA, 2011, 639–644.
  19. [19] S. Park, R.D. Howe, and D.F. Torchiana, Virtual fixtures forrobotic cardiac surgery, Lecture Notes in Computer Science,2208, 2001, 1419–1420.
  20. [20] A. Kapoor, M. Li, and R.H. Taylor, Constrained controlfor surgical assistant robots, IEEE Int. Conf. Robotics andAutomation, Orlando, 2006, 231–236.
  21. [21] B. Duan, R. Wen, C. Chng, W. Wang, et al., Image-guidedrobotic system for radiofrequency ablation of large liver tumorwith single incision, 12th Int. Conf. Ubiquitous Robots andAmbient Intelligence, Goyang, 2015, 284–289.
  22. [22] H. Ren, E. Campos-Nanez, Z. Yaniv, F. Banovac, et al.,Treatment planning and image guidance for radiofrequencyablation of large tumors, IEEE Journal of Biomedical andHealth Informatics, 18(3), 2014, 920–928.
  23. [23] L. Adhami and E. Coste-Maniere, Optimal planning forminimally invasive surgical robots, IEEE Transactions onRobotics, 19(5), 2003, 854–863.
  24. [24] L. Adhami, E. Coste-Maniere, and J.D. Boissonnat, Plan-ning and simulation of robotically assisted minimal invasivesurgery, Medical Image Computing and Computer-AssistedIntervention, 1935, 2000, 624–633.
  25. [25] M. Vaillant, C. Davatzikos, R.H. Taylor, and R.N. Bryan,A path-planning algorithm for image-guided neurosurgery,Lecture Notes in Computer Science, 1205, 1997, 467–476.
  26. [26] R.R. Shamir, I. Tamir, E. Dabool, L. Joskowicz, et al.,A method for planning safe trajectories in image-guided key-hole neurosurgery, Medical Image Computing and Computer-Assisted Intervention, 13(3), 2010, 457–464.
  27. [27] C. Essert, C. Haegelen, F. Lalys, A. Abadie, et al., Auto-matic computation of electrode trajectories for deep brainstimulation: A hybrid symbolic and numerical approach,International Journal of Computer Assisted Radiology andSurgery, 7(4), 2011, 517–532.
  28. [28] C. Baegert, C. Villard, P. Schreck, and L. Soler, Multi-criteriatrajectory planning for hepatic radiofrequency ablation, Med-ical Image Computing and Computer-Assisted Intervention,4792, 2007, 676–684.
  29. [29] C. Baegert, C. Villard, P. Schreck, and L. Soler, Precisedetermination of regions of interest for hepatic RFA planning,Studies in Health Technology and Informatics, 125, 2007, 31–36.
  30. [30] C. Villard, C. Baegert, P. Schreck, L. Soler, et al., Optimal tra-jectories computation within regions of interest for hepatic RFAplanning, Medical Image Computing and Computer-AssistedIntervention, 8, 2005, 49–56.
  31. [31] A. Seitel, M. Engel, C.M. Sommer, B.A. Radeleff, et al.,Computer-assisted trajectory planning for percutaneous needleinsertions, Medical Physics, 38(6), 2011, 3246–3259.
  32. [32] C. Schumann, J. Bieberstein, C. Trumm, D. Schmidt, et al.,Fast automatic path proposal computation for hepatic needleplacement, Medical Imaging 2010: Visualization, Image-Guided Procedures, and Modeling, 7625, 2010, 76251J–76251J-10.
  33. [33] C. Schumann, C. Rieder, S. Haase, K. Terchert, et al., In-teractive multi-criteria planning for radiofrequency ablation,International Journal of Computer Assisted Radiology andSurgery, 10(6), 2015, 879–889.
  34. [34] A. Kapoora, M. Li, and B. Wood, Mixed variable optimizationfor radio frequency ablation planning, Medical Imaging 2011:Visualization, Image-Guided Procedures, and Modeling, 7964,2011, 796420-1–796420-7.
  35. [35] C.C. Chen, M.I. Miga, and R.L. Galloway Jr, Optimizingelectrode placement using finite-element models in radiofre-quency ablation treatment planning, IEEE Transactions onBiomedical Engineering, 56(2), 2009, 237–245.
  36. [36] S. Haase, P. S¨uss, J. Schwientek, K. Teichert, et al., Radiofre-quency ablation planning: An application of semi-infinite mod-elling techniques, European Journal of Operational Research,218(3), 2012, 856–864.
  37. [37] A. Jaberzadeh and C. Essert, Pre-operative planning ofmultiple probes in three dimensions for liver cryosurgery:Comparison of different optimization methods, MathematicalMethods in the Applied Sciences, 39(16), 2015, 4764–4772.
  38. [38] X. Yang, H. Wang, C. Zhang, and K. Chen, A method formapping the boundaries of collision-free reachable workspaces,Mechanism and Machine Theory, 45(7), 2010, 1024–1033.
  39. [39] N. Chakraborty, J. Peng, S. Akella, and J.E. Mitchell, Proxim-ity queries between convex objects: An interior point approachfor implicit surfaces, IEEE Transactions on Robotics, 24(1),2008, 211–220.
  40. [40] A.J. Hanson, Hyperquadrics: Smoothly deformable shapeswith convex polyhedral bounds, Computer Vision, Graphics,and Image Processing, 44(2), 1988, 191–210.
  41. [41] S. Boyd and L. Vandenberghe, Convex optimization (Chicago:University of Chicago Press, 2004).
  42. [42] G. Taubin, Nonplanar curve and surface estimation in 3-space,IEEE Int. Conf. Robotics and Automation, Philadelphia, PA,USA, 1988, 644–645.
  43. [43] D. Keren and C. Gotsman, Fitting curves and surfaceswith constrained implicit polynomials, IEEE Transactions onPattern Analysis and Machine Intelligence, 21(1), 1999, 31–41.
  44. [44] J.E. Dennis and R.B. Jr Schnabel, Numerical methods for un-constrained optimization and nonlinear equations, (EaglewoodCliffs: Prentice-Hall, 1983).
  45. [45] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, et al.,Parametrizing and fitting bounded algebraic curves and sur-faces, IEEE Computer Society Conference on Computer Visionand Pattern Recognition, Champaign, USA, 1992, 103–108.
  46. [46] R. Byrd, J. Nocedal, and R.A. Waltz, An integrated packagefor nonlinear optimization: Large scale nonlinear optimization(New York: Springer-Verlag, 2006).
  47. [47] S.L. Liu, Research on multi-needle surgical planning of robot-assisted microwave coagulation in liver cancer therapy, DoctoralDiss., Tsinghua University, Beijing, China, 2012 (in Chinese).
  48. [48] W.C. Rheinboldt, Numerical analysis of parameterized non-linear equations (New York: John Wiley & Sons, 1986).
  49. [49] E.M. Boctor, M.A. Choti, E.C. Burdette, and R.J. WebsterIII, Three-dimensional ultrasound-guided robotic needle place-ment: An experimental evaluation, The International Journalof Medical Robotics and Computer Assisted Surgery, 4(2),2008, 180–191.

Important Links:

Go Back